Abstract
Subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm leads to delayed vasospasm and neuroischemia, which can result in profound neurologic deficit and death. Therapeutic options after SAH are currently limited to hemodynamic optimization and nimodipine, which have limited clinical efficacy. Experimental SAH results in cerebral vasospasm have demonstrated the downregulation of nitric oxide (NO)-protein kinase G (PKG) signaling elements. VP3 is a novel cell permeant phosphopeptide mimetic of VASP, a substrate of PKG and an actin-associated protein that modulates vasorelaxation in vascular smooth muscle cells. In this study, we determined that intravenous administration of high doses of VP3 did not induce systemic hypotension in rats except at the maximal soluble dose, implying that VP3 is well-tolerated and has a wide therapeutic window. Using a single cisterna magna injection rat model of SAH, we demonstrated that intravenous administration of low-dose VP3 after SAH improved neurologic deficits for up to 14days as determined by the rotarod test. These findings suggest that strategies aimed at targeting the cerebral vasculature with VP3 may improve neurologic deficits associated with SAH.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have