Abstract
We report on a highly selective experimental setup for particle-γ coincidence experiments at the Super-Enge Split-Pole Spectrograph (SE-SPS) of the John D. Fox Superconducting Linear Accelerator Laboratory at Florida State University (FSU) using fast CeBr3 scintillators for γ-ray detection. Specifically, we report on the results of characterization tests for the first five CeBr3 scintillation detectors of the CeBr3 Array (CeBrA) with respect to energy resolution and timing characteristics. We also present results from the first particle-γ coincidence experiments successfully performed with the CeBrA demonstrator and the FSU SE-SPS. We show that with the new setup, γ-decay branching ratios and particle-γ angular correlations can be measured very selectively using narrow excitation energy gates, which are possible thanks to the excellent particle energy resolution of the SE-SPS. In addition, we highlight that nuclear level lifetimes in the nanoseconds regime can be determined by measuring the time difference between particle detection with the SE-SPS focal-plane scintillator and γ-ray detection with the fast CeBrA detectors. Selective excitation energy gates with the SE-SPS exclude any feeding contributions to these lifetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.