Abstract
BackgroundThe mechanistic target of rapamycin (mTOR) signal pathway plays a crucial role in the development of nonalcoholic fatty liver disease (NAFLD). However, the causal effect of mTOR downstream proteins on NAFLD remains unknown. AimsWe conducted a two-sample Mendelian randomization (MR) study to investigate whether the mTOR-dependent circulating proteins, including Eukaryotic Initiation Factor 4E Binding Proteins (eIF4EBPs), Ribosomal Protein S6K kinase 1 (RP-S6K), Eukaryotic Initiation Factor 4E (eIF4E), Eukaryotic Initiation Factor 4A (eIF4A) and Eukaryotic Initiation Factor 4 G (eIF4G), have causal effects on the risk of NAFLD. MethodsThe causal estimate was evaluated with the inverse-variance weighted (IVW) method in discovery stage and validation stage. The single-nucleotide polymorphisms (SNPs) were selected to genetically predict exposures from Genome-Wide Association Studies (GWAS). Exposures with statistically significant effects in the discovery dataset would be further validated in the validation dataset. ResultsMR study revealed that eIF4E had a causal effect on NAFLD in both discovery stage (OR = 1.339, P = 0.037) and validation stage (OR = 1.0007, P = 0.022). Sensitivity analyses confirmed robustness of the results. ConclusionThe genetically predicted higher level of mTOR-dependent eIF4E in plasma might have a causal effect on the occurrence of NAFLD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have