Abstract

Hermitian Clifford analysis is a higher dimensional function theory centered around the simultaneous null solutions, called Hermitian monogenic functions, of two Hermitian conjugate complex Dirac operators. As an essential step towards the construction of an orthogonal basis of Hermitian monogenic polynomials, in this paper a Cauchy–Kovalevskaya extension theorem is established for such polynomials. The minimal number of initial polynomials needed to obtain a unique Hermitian monogenic extension is determined, along with the compatibility conditions they have to satisfy. The Cauchy–Kovalevskaya extension principle then allows for a dimensional analysis of the spaces of spherical Hermitian monogenics, i.e. homogeneous Hermitian monogenic polynomials. A version of this extension theorem for specific real-analytic functions is also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.