Abstract

The theory of complex Hermitean Clifford analysis was developed recently as a refinement of Euclidean Clifford analysis; it focusses on the simultaneous null solutions, called Hermitean monogenic functions, of two Hermitean Dirac operators constituting a splitting of the traditional Dirac operator. In this function theory, the fundamental integral representation formulae, such as the Borel–Pompeiu and the Clifford–Cauchy formula have been obtained by using a (2 × 2) circulant matrix formulation. In the meantime, the basic setting has been established for so-called quaternionic Hermitean Clifford analysis, a theory centred around the simultaneous null solutions, called q-Hermitean monogenic functions, of four Hermitean Dirac operators in a quaternionic Clifford algebra setting. In this paper we address the problem of establishing a quaternionic Hermitean Clifford–Cauchy integral formula, by following a (4 × 4) circulant matrix approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.