Abstract
Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centered around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator called Dirac operator, which factorizes the Laplacian; monogenic functions may thus also be seen as a generalization of holomorphic functions in the complex plane. Hermitian Clifford analysis offers yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions, called Hermitian (or h-) monogenic functions, of two Hermitian Dirac operators which are invariant under the action of the unitary group. In Brackx et al. (2009) [8] a Clifford–Cauchy integral representation formula for h-monogenic functions has been established in the case of domains with smooth boundary, however the approach followed cannot be extended to the case where the boundary of the considered domain is fractal. At present, we investigate an alternative approach which will enable us to define in this case a Hermitian Cauchy integral over a fractal closed surface, leading to several types of integral representation formulae, including the Cauchy and Borel–Pompeiu representations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.