Abstract

Tungsten oxide nanowire arrays have been grown on indium tin oxide coated glass substrate using tungsten trioxide powders as source by thermal evaporation approach without any catalysts. When the O 2/Ar flow rate ratio was 1/100, large-scale, high-density and uniformly distributed tungsten oxide nanowire arrays were obtained. The morphology and structure properties of the tungsten oxide nanowires were characterized by scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The influences of the oxygen concentration on the growth, density, shape and structure of the nanowires were investigated. The possible growth mechanism which governs the various types of nanowire arrays as the O 2/Ar flow rate ratios changed is also discussed. Field emission properties of tungsten oxide nanowire arrays were studied at a poor vacuum condition. The remarkable performance reveals that the tungsten oxide nanowire arrays can be served as a good candidate for commercial application as electron emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.