Abstract
The Li2CO3-ammonia-ballmilling synthesis system of Li4Ti5O12 (LTO) was optimized and doped Li and O by theirs adjacent elements Mg and F respectively. By adjusting the ballmilling parameter, the distribution of Li and Ti sources, the hydrolysis rate and different nucleophilic / electrophilic hydrolysis path of Ti, and the interaction between Li and Ti species can be effectively controlled. The temperature programmed calcination is beneficial to the formation of the middle state (Li2TiO3), obtaining the high quality LTO. Mg and F doping can further optimize the hydrolysis and condensation degree of Ti source, the number of crystal nucleus and the particle size. Therefore, the initial first discharged capability of Mg doped LTO and F doped LTO reach to 152.4 mAh/g and 163.1 mAh/g at 5 C respectively, corresponding 32.4 % and 41.7 % enhancing compared to LTO (115.1 mAh/g). Moreover, the discharge voltage of LTO-Mg decreases from 1.5 V to 1.3 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.