Abstract
Abstract Semiconductor devices are rapidly heading towards nanometer sizes, with dielectric gate oxides already in the 2-3nm thickness range and transistor channel lengths of order 10-20nm. There is good reason to believe, therefore, that physical limits imposed by atomic level granularity will dominate operation of semiconductor devices in the future. Thus, recent work has identified a physical limit for the thickness of SiO2 in order to maintain its insulating character. [1] On the other hand, new opportunities are created, based on new behavior at the atomic level. In the presence of very high local electric fields, for instance, the local electronic structure can change from insulating to conductive, forming a very small, very fast “Mott” transistor. [2] In a single molecule having a localized electronic level which is positioned well with respect to a conducting environment, single electron transistor operation may be possible at room temperature. [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.