Abstract

A single stable adatom on a {110}-type plane of a tungsten tip is created via field-evaporation in a field-ion microscope (FIM) operating at room temperature. This single adatom has sufficient surface mobility at room temperature and migrates, in one-dimension, along a -type direction toward an edge of a {110}-type plane, due to the existence of an electric field gradient. The plane edge has a higher local electric field than its center, since it has a higher local geometric curvature. This result implies that the stable position of a single adatom during a scan of a scanning tunneling microscope (STM) tip on a surface is at the edge and not at the center of a {110}-type plane at room temperature. Therefore, the electron wave function of a tip is not symmetric and this fact should be taken into account in a careful analysis of STM images. Also a tip with a dislocation emerging at a {110}-type plane is suggested as an improved STM tip configuration, as the step at the surface, created by the intersection of the dislocation with it, is a perpetual source of single adatoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call