Abstract
The capture phenomenon and its consequences in nonbitsynchronous mobile packet radio networks for binary phase-shift-keying (BPSK) and differential phase-shift-keying modulation are investigated. Exact values of the bit error probability for given signal-to-noise ratios of colliding BPSK signals are derived. Packet error rates, which are needed for analysis of slotted random multiple access methods, are obtained by simulation. Two kinds of mobile radio channels are considered: the Rayleigh fading channel and the land mobile satellite channel. In the latter, because of shadowing, the probability that one of several colliding data packets is correctly received can be on the same order as the probability that a single packet that is not experiencing a collision is correctly received. The influence of Reed-Solomon codes on packet error probabilities is also studied. A slotted ALOHA system using the land mobile satellite channel is analyzed. It is found that with significant shadowing, the overall system throughput may reach the point-to-point throughput. Also, the code rate cannot be optimized in a straightforward manner by assuming one single transmission at a time. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.