Abstract

The capacitance/voltage characteristics of thin paraelectric lead lanthanum titanate films are measured using platinum electrodes. The films have a maximum capacitance when either a small positive or negative bias voltage is applied. This characteristic is consistent with the electrode interfaces acting as Schottky-like barriers. The voltage at which the capacitance maxima occur increases linearly with film thickness indicating that the film is highly resistive. On the basis of the high apparent film resistance it is proposed that the voltage dependence of the capacitance of the electrode interfaces arises from the ionization of deep level traps within the film and not from depletion layers associated with shallow donor or acceptor states. Application of voltages larger than about 2–3 V results in the disappearance of the capacitance maxima indicating that irreversible changes in the electrode interfaces occur at higher electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.