Abstract
Canonical Variate Analysis (CVA) is one of the most useful of multivariate methods. It is concerned with separating between and within group variation among N samples from K populations with respect to p measured variables. Mahalanobis distance between the K group means can be represented as points in a (K - 1) dimensional space and approximated in a smaller space, with the variables shown as calibrated biplot axes. Within group variation may also be shown, together with circular confidence regions and other convex prediction regions, which may be used to discriminate new samples. This type of representation extends to what we term Analysis of Distance (AoD), whenever a Euclidean inter-sample distance is defined. Although the N × N distance matrix of the samples, which may be large, is required, eigenvalue calculations are needed only for the much smaller K × K matrix of distances between group centroids. All the ancillary information that is attached to a CVA analysis is available in an AoD analysis. We outline the theory and the R programs we developed to implement AoD by presenting two examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have