Abstract

Many intercellular messages regulate the activity of their target cells by altering the intracellular level of cAMP and, as a consequence, the phosphorylation state of proteins which serve as substrates for cAMP-dependent protein kinase. Such regulation plays a crucial role in neuronal development, neuronal function, and neuronal plasticity (e.g., elementary learning mechanisms). Ample information has been accumulated in recent years on the enzymes that regulate the level of cAMP or respond to it, on the regulation of cAMP synthesis by neurohormones, neurotransmitters, ions, and toxins, on neuronal-specific substrate proteins that are phosphorylated by the cAMP-dependent kinase, and on the interaction of the cAMP-cascade with other second-messenger systems within neurons. Such data, obtained by a combination of molecular-biological, biochemical, and cellular approaches, shed light on the detailed mechanisms by which modulation of a ubiquitous molecular cascade leads to a great variety of short-term as well as long-term specific neuronal responses and alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.