Abstract

This review begins with a complete discussion of the erythrocyte spectrin membrane skeleton. Particular attention is given to our current knowledge of the structure of the RBC spectrin molecule, its synthesis, assembly, and turnover, and its interactions with spectrin-binding proteins (ankyrin, protein 4.1, and actin). We then give a historical account of the discovery of nonerythroid spectrin. Since the chicken intestinal form of spectrin (TW260/240) and the brain form of spectrin (fodrin) are the best characterized of the nonerythroid spectrins, we compare these molecules to RBC spectrin. Studies establishing the existence of two brain spectrin isoforms are discussed, including a description of the location of these spectrin isoforms at the light- and electron-microscope level of resolution; a comparison of their structure and interactions with spectrin-binding proteins (ankyrin, actin, synapsin I, amelin, and calmodulin); a description of their expression during brain development; and hypotheses concerning their potential roles in axonal transport and synaptic transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call