Abstract

Shrouds with a frictional interface are used to reduce the dynamic stresses in turbine blades. Due to dry friction energy is dissipated, which can be used to decrease vibration amplitudes and, hence, to increase the life time of turbine blades. The spatial motion of the blades results in a spatial motion of the contact planes. Due to the non-linearity of the problem, the contact planes are discretized. For each contact area, the developed contact model is used to calculate the corresponding tangential and normal contact forces. This contact model includes the roughness of the contact surfaces, the normal pressure distribution due to roughness, the stiffnesses in normal and tangential direction and dry friction. Due to the roughness of the contact planes the normal contact forces and the contact stiffnesses in normal and tangential direction are nonlinear dependent on the relative displacements in the normal direction. This effect is verified by experiments. An experiment with one shrouded blade and two non-Hertzian contacts is used to verify the developed contact model and the calculation method. The comparison between measured and calculated frequency response functions for bending and torsional vibrations of the blade show a very good agreement. A bladed disk assembly with shrouds is investigated and optimized with respect to the vibration amplitudes and alternating stresses. Varying the normal contact force best damping effects are obtained. Separation of the contacts leads to an increase of the alternating stresses and, thus, has to be avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.