Abstract

A two-dimensional analysis of the Charpy V-notch specimen subjected to impact loading, according to the standard DIN EN 10045-1, is carried out, using a transient explicit dynamic finite element program. An elastic-viscoplastic, temperature dependent, constitutive relation for a porous plastic solid based on the Gurson damage model is developed. Ductile fracture of the matrix material will be described by the nucleation and subsequent growth of voids to coalescence. An updated Lagrange–Jaumann formulation is employed accounting for large strain and rotation. The discretization is based on four-node plane strain solid elements with one Gauss point. The equations of motion are integrated numerically by an explicit integration algorithm utilising a lumped mass matrix. The predictions of the numerical analysis in terms of force deflection response, crack resistance behaviour and deformation energy absorbtion are compared with results from Charpy tests which were carried out according to the low-blow technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.