Abstract
The CaF2 effect on the liquidus temperature, electrical conductivity and alumina solubility in the potassium-sodium and potassium-lithium cryolite melts with cryolite ratio (CR = (nKF+nMF)/nAlF3, M = Li, Na) 1.3 was studied. The liquidus temperature in the quisi-binary system [KF-LiF-AlF3]-CaF2 changes with the same manner as in the [KF-NaF-AlF3]-CaF2. The electrical conductivity in the KF-NaF-AlF3-CaF2 melt decreases with increasing the CaF2 content, but it slightly raises with the first small addition of CaF2 into the KF-LiF-AlF3-CaF2 melts, enriched with KF, which was explained by the increased K+ ions mobility due to their relatively low ionic potential. The contribution of the Li+ cations in conductivity of the KF-LiF-AlF3-CaF2 electrolyte is not noteworthy. The Al2O3 solubility in the KF-NaF-AlF3 electrolyte rises with the increasing KF content, but the opposite tendency is observed in the cryolite mixtures containing CaF2. The insoluble compounds - KCaAl2F9 or KCaF3 - formed in the molten mixtures containing potassium and calcium ions endorse the increase of the liquidus temperature. The calcium fluoride effect on the side ledge formation in the electrolytic cell during low-temperature aluminum electrolysis is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have