Abstract

Mediator complexes are large multiprotein assemblies that function in the regulation of eukaryotic gene transcription. In yeast, certain mediator subunits appear to comprise a subcomplex that acts in the regulation of a specific subset of genes. We investigated in a metazoan, Caenorhabditis elegans, the roles and interactions of two of those subunits, CeTRAP240/let-19 and CeTRAP230/dpy-22. We found that CeTRAP240/let-19 contains four domains that are conserved in the human TRAP240 protein and that one of those domains displays intrinsic transcriptional repression activity. Using RNA interference, we found that reduced expression of CeTRAP240/let-19 displayed a high penetrance of embryonic lethality in F1 progeny; animals that escaped embryonic arrest showed mutant phenotypes such as burst vulva and molting defects. CeTRAP240/let-19 appeared to affect specific genes, as CeTRAP240/let-19(RNAi) led to selectively reduced expression of a subset of reporter genes examined. Genetic experiments supported the view that CeTRAP240/let-19 and CeTRAP230/dpy-22, like their Drosophila and yeast counterparts, can operate on common pathways. Thus, a male tail phenotype caused by the pal-1(e2091) mutation was suppressed not only by CeTRAP230/dpy-22 mutants, as reported previously, but also by reduced expression of CeTRAP240/let-19. Additionally, CeTRAP240/let-19(RNAi) in a CeTRAP230/dpy-22 mutant background produced a strong synthetic lethal phenotype. Overall, our results establish specific roles of CeTRAP240/let-19 in C. elegans embryonic development and a functional interaction between CeTRAP240/let-19 and CeTRAP230/dpy-22. Interestingly, whereas this interaction has been conserved from yeast to mammals, the subcomplex modulates metazoan-specific genetic pathways, likely in addition to those also controlled in yeast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.