Abstract

We simulate the folding and fold switching of the C-terminal domain (CTD) of the transcription factor RfaH using an all-atom physics-based model augmented with a dual-basin structure-based potential energy term. We show that this hybrid model captures the essential thermodynamic behavior of this metamorphic domain, that is, a change in the global free energy minimum from an α-helical hairpin to a 5-stranded β-barrel upon the dissociation of the CTD from the rest of the protein. Using Monte Carlo sampling techniques, we then analyze the energy landscape of the CTD in terms of progress variables for folding toward the two folds. We find that, below the folding transition, the energy landscape is characterized by a single, dominant funnel to the native β-barrel structure. The absence of a deep funnel to the α-helical hairpin state reflects a negligible population of this fold for the isolated CTD. We observe, however, a higher α-helix structure content in the unfolded state compared to results from a similar but fold switch-incompetent version of our model. Moreover, in folding simulations started from an extended chain conformation we find transiently formed α-helical structure, occurring early in the process and disappearing as the chain progresses toward the thermally stable β-barrel state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.