Abstract
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.
Highlights
IntroductionFor all cellular processes to function properly, the integrity of the genome has to be maintained
The blueprint of life for each organism is resident in genomic DNA
The structure was determined by single-wavelength anomalous diffraction (SAD) method using selenomethioninelabeled NgoL-C-terminal domain (CTD)
Summary
For all cellular processes to function properly, the integrity of the genome has to be maintained. Even though the molecules and processes involved in replicating the genome function very efficiently to reduce the number of mutations, it has been observed that errors still arise during genome duplication [1]. Mismatches arise during homologous recombination and the deamination of 5-methylcytosine to thymine [1]. These mismatches will give rise to mutations after a round of replication that can be deleterious or silent. Due to the deleterious effects of mismatches there is a need for a system that will correct the errors that escape detection by the proofreading activity of DNA Polymerases. The specific and general molecules associated with the mismatch repair (MMR) pathway fulfill this requirement [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.