Abstract

MutS, MutL and MutH are the three essential proteins for initiation of methyl-directed DNA mismatch repair to correct mistakes made during DNA replication in Escherichia coli. MutH cleaves a newly synthesized and unmethylated daughter strand 5' to the sequence d(GATC) in a hemi-methylated duplex. Activation of MutH requires the recognition of a DNA mismatch by MutS and MutL. We have crystallized MutH in two space groups and solved the structures at 1.7 and 2.3 A resolution, respectively. The active site of MutH is located at an interface between two subdomains that pivot relative to one another, as revealed by comparison of the crystal structures, and this presumably regulates the nuclease activity. The relative motion of the two subdomains in MutH correlates with the position of a protruding C-terminal helix. This helix appears to act as a molecular lever through which MutS and MutL may communicate the detection of a DNA mismatch and activate MutH. With sequence homology to Sau3AI and structural similarity to PvuII endonuclease, MutH is clearly related to these enzymes by divergent evolution, and this suggests that type II restriction endonucleases evolved from a common ancestor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.