Abstract

When tactile afferents were manipulated to fire in periodic bursts of spikes, we discovered that the perceived pitch corresponded to the inter-burst interval (burst gap) in a spike train, rather than the spike rate or burst periodicity as previously thought. Given that tactile frequency mechanisms have many analogies to audition, and indications that temporal frequency channels are linked across the two modalities, we investigated whether there is burst gap temporal encoding in the auditory system. To link this putative neural code to perception, human subjects (n = 13, 6 females) assessed pitch elicited by trains of temporally-structured acoustic pulses in psychophysical experiments. Each pulse was designed to excite a fixed population of cochlear neurons, precluding place of excitation cues, and to elicit desired temporal spike trains in activated afferents. We tested periodicities up to 150 Hz using a variety of burst patterns and found striking deviations from periodicity-predicted pitch. Like the tactile system, the duration of the silent gap between successive bursts of neural activity best predicted perceived pitch, emphasising the role of peripheral temporal coding in shaping pitch. This suggests that temporal patterning of stimulus pulses in cochlear implant users might improve pitch perception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call