Abstract
One reason for the poor pitch performance in current cochlear-implant users may be the highly synchronized neural firing in electric hearing that lacks stochastic properties of neural firing in normal acoustic hearing. This study used three different electric stimulation patterns, jittered, probabilistic, and auditory-model-generated pulses, to mimic some aspects of the normal neural firing pattern in acoustic hearing. Pitch discrimination was measured at standard frequencies of 100, 250, 500, and 1000 Hz on three Nucleus-24 cochlear-implant users. To test the utility of the autocorrelation pitch perception model in electric hearing, one, two, and four electrodes were stimulated independently with the same patterned electric stimulation. Results showed no improvement in performance with any experimental pattern compared to the fixed-rate control. Pitch discrimination was actually worsened with the jittered pattern at low frequencies (125 and 250 Hz) than that of the control, suggesting that externally introduced stochastic properties do not improve pitch perception in electric stimulation. The multiple-electrode stimulation did not improve performance but did not degrade performance either. The present results suggest that both "the right time and the right place" may be needed to restore normal pitch perception in cochlear-implant users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.