Abstract

We prove that uniform random quadrangulations of the sphere with n faces, endowed with the usual graph distance and renormalized by n−1/4, converge as n → ∞ in distribution for the Gromov–Hausdorff topology to a limiting metric space. We validate a conjecture by Le Gall, by showing that the limit is (up to a scale constant) the so-called Brownian map, which was introduced by Marckert–Mokkadem and Le Gall as the most natural candidate for the scaling limit of many models of random plane maps. The proof relies strongly on the concept of geodesic stars in the map, which are configurations made of several geodesics that only share a common endpoint and do not meet elsewhere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.