Abstract
Consider $q_n$ a random pointed quadrangulation chosen equally likely among the pointed quadrangulations with $n$ faces. In this paper we show that, when $n$ goes to $+\infty$, $q_n$ suitably normalized converges weakly in a certain sense to a random limit object, which is continuous and compact, and that we name the Brownian map. The same result is shown for a model of rooted quadrangulations and for some models of rooted quadrangulations with random edge lengths. A metric space of rooted (resp. pointed) abstract maps that contains the model of discrete rooted (resp. pointed) quadrangulations and the model of the Brownian map is defined. The weak convergences hold in these metric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.