Abstract
The torsion of an infinite non-homogeneous elastic cylindrical fiber, containing a penny-shaped crack embedded in an infinite non-homogeneous elastic material is considered. The cylinder and elastic medium have different shear moduli. Using integral transformation techniques the solution of the problem is reduced to the solution of dual integral equations. Later on the solution of the dual integral equations is transformed into the solution of a Fredholm integral equation of the second kind, which is solved numerically. Closed form expressions are obtained for the stress intensity factor and numerical values for the stress intensity factors are graphed to demonstrate the effect of non-homogeneity of the fiber and infinite medium. In the end the stress singularity is obtained when the crack touches the infinite nonhomogeneous medium (matrix).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift f�r Angewandte Mathematik und Physik (ZAMP)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.