Abstract

Loading of the Brassica napus extract (BNE) on PLGA nanoparticle (BNE-PNP) and study its necroptotic activity in human MCF7-breast cancer cells. Double emulsion solvent evaporation methods were used for synthesis of BNE-PNP and DLS, SEM, and surface Zeta-potential analysis were applied for defining the physicochemical properties of BNE-PNP. The cytotoxic impact of BNE-PNP nanoparticles was analyzed by MTT assay and expression of apoptotic (P53 and Cas-3) and necrotic (TNF-α) gene markers were measured by qPCR to evaluate the BNE-PNP-induced cell death type. The stable (-36.07 mV) BNE-PNP were synthesized at 71.07 nm dimension. They significantly decrease the count of metabolically active MCF7 cells (IC50: 170.94 µg/ml after 48 h). The BNE-PNP induced an early programmed necrotic (necroptosis) and late apoptotic death on the MCF7 cancer cells by up-regulating all the P53/TNF-α and Cas-3 gene expression, respectively. The BNE-PNP dose-dependently induced an early cell-selective necroptotic death. Since the necroptotic death is known as a biocompatible cellular death induction, the BNE-PNP have the potential to be used as a safe efficient anticancer compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.