Abstract
In the present work, employing the nonlinear equations of an incompressible, isotropic and elastic thin tube and approximate equations of an incompressible viscous fluid, the propagation of weakly nonlinear waves is examined. In order to include the geometrical and structural dispersion into analysis, the wall's inertial and shear deformation are taken into account in determining the inner pressure-inner cross sectional area relation. Using the reductive perturbation technique, the propagation of weakly nonlinear waves, in the long-wave approximation, are shown to be governed by the Korteweg–de Vries (KdV) and the Korteweg–de Vries–Burgers (KdVB), depending on the balance between the nonlinearity, dispersion and/or dissipation. In the case of small viscosity (or large Reynolds number), the behaviour of viscous fluid is quite close to that ideal fluid and viscous effects are confined to a very thin layer near the boundary. In this case, using the boundary layer approximation we obtain the viscous-Korteweg–de Vries and viscous-Burgers equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.