Abstract

In this work, we studied the propagation of weakly non-linear waves in a prestressed thin elastic tube filled with an incompressible layered fluid, where the outer layer is assumed to be inviscid whereas the cylindrical core is considered to be viscous. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is studied. The governing equation is shown to be the perturbed Korteweg–de Vries (KdV) equation. A travelling wave type of solution for this evolution equation is sought and it is shown that the amplitude of the solitary wave for the perturbed KdV equation decays slowly with time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.