Abstract
SummaryThe global financial crisis and Covid‐19 recession have renewed discussion concerning trend‐cycle discovery in macroeconomic data, and boosting has recently upgraded the popular Hodrick‐Prescott filter to a modern machine learning device suited to data‐rich and rapid computational environments. This paper extends boosting's trend determination capability to higher order integrated processes and time series with roots that are local to unity. The theory is established by understanding the asymptotic effect of boosting on a simple exponential function. Given a universe of time series in FRED databases that exhibit various dynamic patterns, boosting timely captures downturns at crises and recoveries that follow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.