Abstract
ABSTRACTQuantile regression has become widely used in empirical macroeconomics, in particular for estimating and forecasting tail risks. This paper examines various choices in the specification of quantile regressions for macro applications, including how and to what extent to include shrinkage and whether to apply shrinkage in a classical or Bayesian framework. We focus on forecasting accuracy, measured with quantile scores and quantile‐weighted continuous ranked probability scores at a range of quantiles from the left to right tail. Across applications, we find that shrinkage is generally helpful to quantile forecast accuracy, with Bayesian quantile regression dominating frequentist quantile regression.JEL Classification: C53, E17, E37, F47
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.