Abstract
We used an in situ reconstitution assay to examine the receptor coupling to purified G protein alpha subunits by the bombesin receptor family, including gastrin-releasing peptide receptor (GRP-R), neuromedin B receptor (NMB-R), and bombesin receptor subtype 3 (BRS-3). Cells expressing GRP-R or NMB-R catalyzed the activation of squid retinal Galphaq and mouse Galphaq but not bovine retinal Galphat or bovine brain Galphai/o. The GRP-R- and NMB-R-catalyzed activations of Galphaq were dependent upon and enhanced by different betagamma dimers in the same rank order as follows: bovine brain betagamma > beta1gamma2 >> beta1gamma1. Despite these qualitative similarities, GRP-R and NMB-R had distinct kinetic properties in receptor-G protein coupling. GRP-R had higher affinities for bovine brain betagamma, beta1gamma1, and beta1gamma2 and squid retinal Galphaq. In addition, GRP-R showed higher catalytic activity on squid Galphaq. Like GRP-R and NMB-R, BRS-3 did not catalyze GTPgammaS binding to Galphai/o or Galphat. However, BRS-3 showed little, if any, coupling with squid Galphaq but clearly activated mouse Galphaq. GRP-R and NMB-R catalyzed GTPgammaS binding to both squid and mouse Galphaq, with GRP-R activating squid Galphaq more effectively, and NMB-R also showed slight preference for squid Galphaq. These studies reveal that the structurally similar bombesin receptor subtypes, in particular BRS-3, possess distinct coupling preferences among members of the Galphaq family.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have