Abstract

This is a continuation of our series of works for the inhomogeneous Boltzmann equation. We study qualitative properties of classical solutions, precisely, the full regularization in all variables, uniqueness, non-negativity and convergence rate to the equilibrium. Together with the results of Parts I and II about the well posedness of the Cauchy problem around Maxwellian, we conclude this series with a satisfactory mathematical theory for Boltzmann equation without angular cutoff.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.