Abstract

The behavior of hypercycle spirals in a two-dimensional cellular automaton model is analyzed. Each spiral can be approximated by an Archimedean spiral with center, width, and phase change according to Brownian motion. A barrier exists between two spirals if the phase synchronization hypothesis is taken into account, and the occurrence rate of pair decay (simultaneous disappearance of two spirals) can be explained through a random walk simulation with the barrier. Simulation experiments show that adjacent species violation is necessary to create new spirals. A hypercycle system can live for a long time if spirals in the system are somewhat unstable, since new spirals cannot emerge when existing spirals are too stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.