Abstract

1. Adenosine-5'-triphosphate (ATP) is known to exert a variety of biological effects via the activation of either ionotropic P2x- or G-protein coupled P2Y-purinoceptor subtypes. In this study the effects induced by ATP and ATP analogues on rat bladder strips were characterized at resting tone and in carbachol-prestimulated tissues. 2. ATP exerted a clear concentration-dependent biphasic response, which was maximal at 1 mM concentration and was characterized by an immediate and transient contraction, followed by a slower sustained relaxation. The receptor mediating contraction was susceptible to desensitization by ATP and by the ATP analogue, alpha,beta-methyleneATP (alpha,beta-meATP) showing the typical features of the P2x-purinoceptor; conversely, ATP-evoked relaxation did not undergo tachyphylaxis following either ATP or alpha,beta-meATP. 3. The slower and sustained relaxant phase seemed to be due to activation of P2Y-purinoceptors, based on responses obtained with the P2Y agonist, 2-methyl-thioATP (2-meSATP) and, more importantly, based on the clear involvement of the G-proteins. In fact, the G-protein activator, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) significantly potentiated and the G-protein blocking agent, guanosine 5'-O-(2-thio-diphosphate) (GDP beta S) completely abolished the ATP-induced relaxation. No effects were exerted by these two G-protein modulators on the ATP-induced contraction. 4. The relaxant component of the ATP response of bladder tissue was not significantly influenced by nitro-benzyl-thioinosine (NBTI) or by 8-phenyltheophylline (8-PT), suggesting that the contribution of the ATP metabolite adenosine to this response was negligible. Moreover, relaxation evoked by ATP and by the adenosine analogue, 5'-N-ethylcarboxamidoadenosine (NECA) was additive.5. Suramin was unable to modify either the relaxant or the contractile responses of bladder strips to ATP. However, when tested on the concentration-response curve to the slowly hydrolysable P2x-agonist alpha,beta-meATP, a rightward shift was detected, suggesting that ATP contractile responses are mediated by suramine-sensitive P2x-purinoceptors.6. Uridine-5'-triphosphate (UTP) only induced a rapid and concentration-dependent contraction of the rat bladder preparation, which was not desensitized by pre-exposure to alpha,beta-meATP, suggesting that UTP responses were not mediated by the 'classical' P2X-purinoceptor.7. It is therefore concluded that both P2x- and P2y-purinoceptors, which mediate ATP-induced contraction and relaxation, respectively, are present in rat bladder. Moreover, removal of epithelium did not affect ATP-elicited contraction, whereas ATP-induced relaxation was significantly augmented. These data suggest that P2x- and P2Y- purinoceptors are localized in smooth muscle cells and that the relaxant response is probably modulated by excitatory factor(s) released by epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.