Abstract
Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems.
Highlights
Nanoparticles (NPs) are defined as having at least one dimension measuring 100 nanometers or less [1].NPs modulate a wide range of biological reactions, including inflammation, cell toxicity, and genotoxicity [2,3]
The enthalpy of formation of a gaseous cation from a metal oxide solid combines two mechanisms that contribute to metal oxide cytotoxicity: (a) lattice energy, which addresses the dissolution of a cation from the solid state omitting redox reactions, and (b) electronic properties of the valence and conduction bands which contributes to its redox capabilities [57]
This model is based on density functional theory (DFT), similar to the first mechanism proposed by Burello and Worth [50] but requires only a single fitting parameter to estimate toxicity
Summary
Nanoparticles (NPs) are defined as having at least one dimension measuring 100 nanometers or less [1]. NPs modulate a wide range of biological reactions, including inflammation, cell toxicity, and genotoxicity [2,3]. Since nanomaterials can bind to a wide variety of substances, including proteins, drugs and nucleotides, and are often engineered to target specific organs and tissues, they can provide substantial benefits for nanomedical applications. Biomolecules are altered by NPs through energy exchanges within specific thermodynamic, kinetic and physicochemical boundaries [4,5]. Multiple factors affect the reactivity of soluble NPs with biomolecules, including NP size, core composition, shape, surface properties, purity and manufacturing method. The purpose of this review is to present proposed theoretical mechanisms of NP modification of biomolecules and to discuss the challenges in comparing and modeling NPs effects on cells
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.