Abstract

To address the nanomaterial exposure threat, it is imperative to understand how nanomaterials are recognized, internalized, and distributed within diverse cell systems. Targeting of nanomaterials to a specific cell type is generally attained through the modification of the nanoparticle (NP) surface leading to required cellular uptake. The enhanced cellular uptake to normal cells can direct to the higher interaction of NPs with subcellular organelles resulting the provocation of various signaling pathways. The successes of NPs rely on the prospect for the synthesis of functionalized NPs with necessary properties and their enhanced potential for cellular uptake for specific targeting. In the present study, we have modeled the cellular uptake of 109 surface modifiers of metal oxide nanoparticles (MNPs) for three different cell lines: HUVEC (Human endothelial cells), U937 (human macrophage cells), and PaCa2 (cancer cell lines). Along with the quantitative structure–activity relationship (QSAR) models, for the very first time we have developed and performed quantitative inter cell line uptake specificity (QICLUS) modeling to identify the physicochemical properties, as well as majorly structural fragments responsible for cellular uptake differences between two specific cell lines. The present work provides a comprehensive understanding of the cellular uptake of MNPs and the underlying structural parameters controlling the nano-cellular interactions. This phenomenon has also been analyzed from the QSAR and QICLUS models that concluded the functional groups of surface modifiers like amine, anhydride, halogen atoms, nitro group, acids have the dominating roles for the uptake of MNPs into the cell lines. Thus, the developed models may be used for designing of novel surface modifiers of MNPs of desired characteristics for proper cell–NPs interactions, as well as in the context of virtual screening aspect. Moreover, the MNP–cell interactions can give some idea about the toxicity for target-specific drug delivery treatment as higher cellular uptake is required for specific cells to treat the disease and lower uptake to the neighboring cells for lower toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.