Abstract

BackgroundAs the optimal source of seed cells in periodontal tissue engineering, periodontal ligament stem cells (PDLSCs) have always been researched to improve cell expansion due to their limited resource and spontaneous differentiation in vitro cultivation. Fibroblast growth factor-2 (FGF-2) has been proven to stimulate bone marrow mesenchymal stem cells (BMMSCs) proliferation and maintain their pluripotency when being added to the culture medium. As a small molecule inhibitor of transforming growth factor-beta receptors (TGF-βRs), A83-01 can also promote cell proliferation. Therefore, the aim of this study was to verify whether the combined application of FGF-2 and A83-01 could augment cell quantity and quality during in vitro culture.MethodsPDLSCs were preconditioned with A83-01, FGF-2, or their combination. A cell counting kit-8 (CCK8) assay, cell apoptosis assay, ALP activity assay, Alizarin Red S staining assay, RT-PCR assay, Western blot assay and ELISA were used to determine the sustained effects of different preconditioning strategies on the proliferation, apoptosis, stemness, osteogenic differentiation and paracrine action of PDLSCs.ResultsThe combined application of FGF-2 and A83-01 significantly augmented cell expansion, reduced cell apoptosis, magnified stemness expression, promoted later osteogenic differentiation and mineralization and increased paracrine action of PDLSCs compared with the control. Moreover, the combination presented significant advantages in enhancing proliferation, stemness expression and paracrine action over FGF-2 alone.ConclusionsThe combined application of A83-01 and FGF-2 may be an improved strategy for PDLSCs biological behavior optimization in culture expansion and advantageous for reinforcing proliferation, stemness expression and cytokine secretion over FGF-2 alone.

Highlights

  • As the optimal source of seed cells in periodontal tissue engineering, periodontal ligament stem cells (PDLSCs) have always been researched to improve cell expansion due to their limited resource and spontaneous differentiation in vitro cultivation

  • PDLSCs are a type of mesenchymal stem cell (MSCs) that are isolated from the root of the tooth and similar to other MSCs such as bone marrow mesenchymal stem cells (BMMSCs) [1], dental pulp stem cells [2] and apical papilla stem cell [3], they have the ability of self-renewal and multipotent differentiation [4]

  • Statistical probability of p < 0.05 was considered significant. Both A83‐01 and FGF‐2 preconditioning promoted the proliferation of PDLSCs, and their combination had a significantly superimposed effect First, the optimal concentrations of A83-01 for PDLSC proliferation were determined by the cell counting kit-8 (CCK8) assay

Read more

Summary

Introduction

As the optimal source of seed cells in periodontal tissue engineering, periodontal ligament stem cells (PDLSCs) have always been researched to improve cell expansion due to their limited resource and spontaneous differentiation in vitro cultivation. Transplantation of conditioned medium (CM), which contains paracrine factors such as the insulin-like growth factor (IGF-1) and vascular endothelial growth factor (VEGF), has been reported to enhance wound healing in animal models [15]. This implies that the more paracrine factors MSCs, including PDLSCs, produce, the greater tissue regeneration and wound healing potentials of MSC-CM. Supplementing some ingredients into the culture medium to obtain a sufficient amount of PDLSCs that both have both the optimal potential of osteogenic differentiation and secret tissue regenerationassociated paracrine factors with fewer passages allows for periodontal regeneration treatment by transplantation of PDLSCs or PDLSC-CM

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.