Abstract

Based on the binding of the UvrAB complex to a promoter region in transcription open complexes (Ahn, B., and Grossman, L. (1996) J. Biol. Chem. 271, 21453-21461) and the requirement of a single-stranded region for UvrAB helicase activity, we examined the binding of UvrAB proteins to synthetic bubble or loop regions in duplex DNA and the role of these regions in translocation of the UvrAB complex as well as incision of DNA damage. We found that the UvrAB complex was able to bind to bubble and loop regions with an affinity similar to that for damaged DNA in the absence of RNAP. The preferential recognition and incision of damaged sites by the UvrAB complex was observed downstream of the bubble or loop region in the strand complementary to the strand along which the UvrAB complex translocates. These results imply that the bubble region generated in duplex DNA by RNAP serves as a preferred entry site for the translocation of the UvrAB complex, and that preferential binding and unidirectional translocation of the UvrAB complex predetermine where incision is to occur.

Highlights

  • UvrAB helicase activity, we examined the binding of UvrAB proteins to synthetic bubble or loop regions in duplex DNA and the role of these regions in translocation of the UvrAB complex as well as incision of DNA damage

  • We found that the UvrAB complex was able to bind to bubble and loop regions with an affinity similar to that for damaged DNA in the absence of RNAP

  • The preferential recognition and incision of damaged sites by the UvrAB complex was observed downstream of the bubble or loop region in the strand complementary to the strand along which the UvrAB complex translocates. These results imply that the bubble region generated in duplex DNA by RNAP serves as a preferred entry site for the translocation of the UvrAB complex, and that preferential binding and unidirectional translocation of the UvrAB complex predetermine where incision is to occur

Read more

Summary

Introduction

We found that the UvrAB complex was able to bind to bubble and loop regions with an affinity similar to that for damaged DNA in the absence of RNAP. We report that the UvrAB complex binds to bubble and loop regions with an affinity similar to that for damaged DNA, and that preferential incision was observed in Binding Experiments—Apparent dissociation constants for UvrA or UvrAB binding to DNA substrate can be determined by measuring the extent of complex formation as a function of protein concentration.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.