Abstract

Starting from the random extension of the Cantor middle set in [0,1], by iteratively removing the central uniform spacing from the intervals remaining in the previous step, we define random Beta(p,1)Cantor sets, and compute their Hausdorff dimension. Next we define a deterministic counterpart, by iteratively removing the expected value of the spacing defined by the appropriate Beta(p,1) order statistics. We investigate the reasons why the Hausdorff dimension of this deterministic fractal is greater than the Hausdorff dimension of the corresponding random fractals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.