Abstract

The iterative elimination of the middle spacing in the random division of intervals with two points “at random” — in the narrow sense of uniformly distributed — generates a random middle Cantor set. We compute the Hausdorff dimension (which intuitively evaluates how “dense” a set is) of the random middle third Cantor set, and we verify that although the deterministic middle third Cantor set is the expectation of the random middle third Cantor set, it is more dense than its stochastic counterpart. This can be explained by the dependence of order statistics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.