Abstract

Background and objective: Chest compressions before initial defibrillation attempts have been shown to increase successful defibrillation. This animal study was designed to assess whether ventricular fibrillation mean frequency after 90 s of basic life support cardiopulmonary resuscitation (CPR) may be used as an indicator of coronary perfusion and mean arterial pressure during CPR. Methods and results: After 4 min of ventricular fibrillation cardiac arrest in a porcine model, CPR was performed manually for 3 min. Mean ventricular fibrillation frequency and amplitude, together with coronary perfusion and mean arterial pressure were measured before initiation of chest compressions, and after 90 s and 3 min of basic life support CPR. Increases in fibrillation mean frequency correlated with increases in coronary perfusion and mean arterial pressure after both 90 s ( R=0.77, P<0.0001, n=30; R=0.75, P<0.0001, n=30, respectively) and 3 min ( R=0.61, P<0.001, n=30; R=0.78, P<0.0001, n=30, respectively) of basic life support CPR. Increases in fibrillation mean amplitude correlated with increases in mean arterial pressure after both 90 s ( R=0.46, P<0.01; n=30) and 3 min ( R=0.42, P<0.05, n=30) of CPR. Correlation between fibrillation mean amplitude and coronary perfusion pressure was not significant both at 90 s and 3 min of CPR. Conclusions: In this porcine laboratory model, 90 s and 3 min of CPR improved ventricular fibrillation mean frequency, which correlated positively with coronary perfusion pressure, and mean arterial pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call