Abstract

Two dimensional (2D) liquid chromatography (LC) separations of proteins can be obtained faster and more automated than traditional 2D gel electrophoresis. Previously we have described a 2D LC method for separation of native proteins with separation according to pI by pH-gradient strong anion exchange (SAX) chromatography in the first dimension, and according to hydrophobicity by reversed phase chromatography in the second dimension. Since there are few literature reports on the combination of reduced/alkylated proteins and modern LC, a basic study of the chromatographic properties of a few reduced /alkylated proteins was undertaken with a pH-gradient SAX chromatographic system. Proteins where the disulfide groups were reduced, but not alkylated, were also included. The conditions that separated native proteins according to pI could not be used for neither reduced nor reduced/alkylated proteins. High concentrations of urea (4–8 M) were needed in the mobile phase in order to obtain good peak shapes. Addition of urea had an undesired impact on both the retention of the proteins and the pH gradient profile, with the effect that little correlation between reported pI values and elution pH was found. The conclusion was that proteins should be separated in the native state if good pI–pH correlations are important, and in the alkylated state with urea if other considerations are more important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call