Abstract
In this article, we study some algebraic and combinatorial behaviors of expansion functor. We show that on monomial ideals some properties like polymatroidalness, weakly polymatroidalness, and having linear quotients are preserved under taking the expansion functor.The main part of the article is devoted to study of toric ideals associated to the expansion of subsets of monomials which are minimal with respect to divisibility. It is shown that, for a given discrete polymatroid P, if toric ideal of P is generated by double swaps, then toric ideal of any expansion of P has such a property. This result, in a special case, says that White's conjecture is preserved under taking the expansion functor. Finally, the construction of Gröbner bases and some homological properties of toric ideals associated to expansions of subsets of monomials is investigated.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have