Abstract
Using different models of focal cortical injury in adult rats, the neural structural and behavioral outcomes of unilateral lesions of the forelimb representation of the sensorimotor cortex (SMC) were assessed. Lesions were produced using either electrolytic, aspiration, or combined (‘electroaspiration’) techniques. Measurements of dendritic arborization in layer V of the motor cortex opposite the lesion revealed a growth of pyramidal neuron dendritic processes following electrolytic lesions in comparison to shams. This effect was not found in either the aspiration or electroaspiration lesion groups. Behaviorally, animals in all lesion groups developed a hyper-reliance on the forelimb ipsilateral to the lesion and proportionate disuse of the contralateral (impaired) forelimb for postural support behaviors. In comparison to sham-operated animals, the initial asymmetries in behaviors expressed during movement were similar between lesion groups, but were less enduring following electrolytic lesions than following aspiration and electroaspiration lesions. Furthermore, both aspiration lesion groups had more prevalent adduction of the impaired forelimb than the electrolytic-only lesion rats. Thus, cortical aspiration resulted in more severe and enduring forelimb impairments than the electrolytic lesions, despite similar lesion sizes, as assessed using cortical volume measures. These findings suggest that the aspiration lesion procedures, at least as performed in the present study, exacerbate the behavioral effects of focal cortical injury and limit compensatory plasticity in the contralateral cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.