Abstract

Analytical methods are developed for treating steady-state axisymmetric thermoelastic problems defined in bispherical coordinates. Possible geometrical configurations include the infinite space with two spherical cavities of arbitrary radii and separation distance, the half-space with a spherical cavity, and the thick-walled shell having eccentric spherical boundaries. Thermal conditions must be prescribed at the surface of the body such that the temperature distribution is uniquely determined. The surfaces of the body are traction free. Numerical results for a half-space containing a spherical cavity heated to constant temperature with zero temperature on the plane and at infinity are presented in graphical form for representative geometrical variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.