Abstract
The rough sets based on L-fuzzy relations and L-fuzzy coverings are the two most well-known L-fuzzy rough sets. Quite recently, we prove that some of these rough sets can be unified into one framework—rough sets based on L-generalized fuzzy neighborhood systems. So, the study on the rough sets based on L-generalized fuzzy neighborhood system has more general significance. Axiomatic characterization is the foundation of L-fuzzy rough set theory: the axiom sets of approximation operators guarantee the existence of L-fuzzy relations, L-fuzzy coverings that reproduce the approximation operators. In this paper, we shall give an axiomatic study on L-generalized fuzzy neighborhood system-based approximation operators. In particular, we will seek the axiomatic sets to characterize the approximation operators generated by serial, reflexive, unary and transitive L-generalized fuzzy neighborhood systems, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.