Abstract

Expression of the c-Myc proto-oncoprotein is tightly regulated in normal cells. Phosphorylation at two conserved residues, threonine58 (T58) and serine62 (S62), regulates c-Myc protein stability. In cancer cells, c-Myc can become aberrantly stabilized associated with altered T58 and S62 phosphorylation. A complex signalling cascade involving GSK3beta kinase, the Pin1 prolyl isomerase, and the PP2A-B56alpha phosphatase controls phosphorylation at these sites. We report here a novel role for the tumour suppressor scaffold protein Axin1 in facilitating the formation of a degradation complex for c-Myc containing GSK3beta, Pin1, and PP2A-B56alpha. Although knockdown of Axin1 decreases the association of c-Myc with these proteins, reduces T58 and enhances S62 phosphorylation, and increases c-Myc stability, acute expression of Axin1 reduces c-Myc levels and suppresses c-Myc transcriptional activity. Moreover, the regulation of c-Myc by Axin1 is impaired in several tested cancer cell lines with known stabilization of c-Myc or loss of Axin1. This study provides critical insight into the regulation of c-Myc expression, how this can be disrupted in three cancer types, and adds to our knowledge of the tumour suppressor activity of Axin1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.