Abstract
The main aim of the classification of linear codes is the evaluation of complete lists of representatives of the isometry classes. These classes are mostly defined with respect to linear isometry, but it is well known that there is also the more general definition of semilinear isometry taking the field automorphisms into account. This notion leads to bigger classes so the data becomes smaller. Hence we describe an algorithm that gives canonical representatives of these bigger classes by calculating a unique generator matrix to a given linear code, in a well defined manner.   The algorithm is based on the partitioning and refinement idea which is also used to calculate the canonical labeling of a graph [12] and it similarly returns the automorphism group of the given linear code. The time needed by the implementation of the algorithm is comparable to Leon's program [10] for the calculation of the linear automorphism group of a linear code, but it additionally provides a unique representative and the automorphism group with respect to the more general notion of semilinear equivalence. The program can be used online under http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory/CanonicalForm/index.html.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.